Prompt实战优化

转载 作者:来者不拒 更新时间:2024-01-31 09:25:56 24 4

1.概述

在深度学习领域,Prompt(提示语)被广泛应用于自然语言处理任务中,如文本生成、机器翻译和问答系统等。Prompt的设计对模型的性能和生成结果有着重要的影响,因此在实际应用中合理而有效地利用Prompt是提升模型表现的关键策略之一。本篇博客笔者将为大家介绍如何通过反复修改Prompt,优化ChatGPT输出,使其更好、更符合期望.

2.内容

2.1 什么是Prompt

在自然语言处理中,Prompt是指告诉语言模型如何根据示例或指令进行响应的行为。在这一领域,像few-shot、zero-shot和chain-of-thought等不同方法对提升AI模型(如GPT-3.5-Turbo、GPT-4等)的性能至关重要。从适应性和语境理解到逻辑推理和任务特定学习,每种技术都有其独特的优势。在这个框架内,我们探讨了每种提示技术的细微差别,并提供了示例和编码演示,以突显如何使用它们。研究这些方法有助于我们理解AI模型的适应性和潜力,并展示它们在解决各种领域的问题时的表现如何.

2.2 零样本Prompt

零样本Prompt是在没有具体示例的情况下指导语言模型,依赖模型对上下文的本能理解。基于已有知识,模型能够生成相应的理解.

比如:

prompt:
对给定文本执行情感分析,并将其分类为中性、负面或正面。
输入:最近的旅行很棒
输出:正面

截图如下:

在这种情况下,语言模型的任务是进行情感分析,而无需给出特定的训练实例。该模型利用其现有知识来解释和分类所提供文本的情感。这种方法被称为零样本Prompt,因为它依赖于模型固有的上下文理解而不是明确的示例。  。

2.3 思维链Prompt

在直接深入研究几次Prompt之前,让笔者给大家介绍一系列想法。这将帮助大家理解为什么需要在Prompt中提供示例,尤其是在复杂的场景中.

2.3.1 标准Prompt

问题 1: Sam有 3 台笔记本。她又购买了 4 包笔记本,每包 5 个笔记本。莎拉现在有多少本笔记本?
答案: 23本笔记本
问题 2:篮子里有 30 个苹果。如果午餐用 20 个苹果,另外从市场上买 6 个,篮子里有多少个苹果?
答案:篮子里现在有16个苹果。

模型回答如图所示:

 2.3.2 链式Prompt

问题 1: Sam有 3 台笔记本。她又购买了 4 包笔记本,每包 5 个笔记本。莎拉现在有多少本笔记本?
回答:Sam原本有3台笔记本,然后购买了4包笔记本,每包包含5个笔记本。因此,她购买的笔记本总数为:
3+(4×5)=3+20=23
所以,莎拉现在有23本笔记本。

问题 2:篮子里有 30 个苹果。如果午餐用 20 个苹果,另外从市场上买 6 个,篮子里有多少个苹果?
回答:篮子里一开始有30个苹果,午餐用去了20个,然后从市场上又买了6个。篮子里的苹果数量可以通过以下计算得到:
30−20+6=16
所以,篮子里现在有16个苹果。

模型回答如图所示: